Dihydropyridine receptors are primarily functional L-type calcium channels in rabbit ventricular myocytes.

نویسندگان

  • W Y Lew
  • L V Hryshko
  • D M Bers
چکیده

We measured [3H]PN200-110 binding and patch-clamp currents in rabbit ventricular myocytes to determine if there is a disparity between the density of dihydropyridine-specific receptors and functional L-type calcium channels, as has been reported for skeletal muscle. The dihydropyridine receptor density was 74.7 +/- 4.2 fmol/mg protein (mean +/- SEM, Kd = 1.73 +/- 0.29 nM, n = 6) in ventricular homogenates and 147 +/- 6 fmol/mg protein (Kd = 1.15 +/- 0.16 nM, n = 4) in myocytes. Ventricular homogenates contained 121 +/- 9 mg protein/g wet wt (n = 7). These values were used to calculate a dihydropyridine receptor density of 12.9 dihydropyridine sites/micron2 for ventricular homogenates and 14.8 dihydropyridine sites/micron2 for myocytes. The number of functional L-type calcium channels (N) was calculated from measurements of whole-cell current (I), single-channel current (i), and open probability (po), where N = I/(i x po). We measured sodium current through calcium channels (I(ns)) to avoid calcium-induced inactivation. Whole-cell (I(ns)) and single-channel (i(ns) and po) measurements were obtained under similar ionic conditions at a test potential of -20 mV. In six cells, the peak I(ns) was approximately 105 pA/pF. The single-channel conductance was 40.8 +/- 2.6 pS (n = 12), and i(ns) at -20 mV was 1.96 pA. The mean po at -20 mV was 0.030 +/- 0.002 in 16 patches in which only a single channel was evident. The calculated density of functional L-type calcium channels was approximately 18 channels/micron2.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of the number of dihydropyridine receptors with the number of functional L-type calcium channels in embryonic heart.

We compared the density of dihydropyridine (DHP) receptor sites with the density of functional L-type calcium channels in ventricular myocytes from chick heart at embryonic day 11. DHP receptors were quantified by using the DHP antagonist (+)-[3H]PN200-110 and by competition binding with the agonist Bay K 8644. The number of agonist and antagonist binding sites per ventricle was similar (250 +/...

متن کامل

Alterations in dihydropyridine receptors in dystrophin-deficient cardiac muscle.

The deficiency of dystrophin, a critical membrane stabilizing protein, in the mdx mouse causes an elevation in intracellular calcium in myocytes. One mechanism that could elicit increases in intracellular calcium is enhanced influx via the L-type calcium channels. This study investigated the effects of the dihydropyridines BAY K 8644 and nifedipine and alterations in dihydropyridine receptors i...

متن کامل

Calcium currents and transients of native and heterologously expressed mutant skeletal muscle DHP receptor alpha1 subunits (R528H)

Rabbit cDNA of the alpha1 subunit of the skeletal muscle dihydropyridine (DHP) receptor was functionally expressed in a muscular dysgenesis mouse (mdg) cell line, GLT. L-type calcium currents and transients were recorded for the wild type and a mutant alpha1 subunit carrying an R528H substitution in the supposed voltage sensor of the second channel domain that is linked to a human disease, hypo...

متن کامل

Synthesis and Effects of Novel Dihydropyridines as Dual Calcium Channel Blocker and Angiotensin Antagonist on Isolated Rat Aorta

Objective(s) Four novel losartan analogues 5a-d were synthesized by connecting a dihydropyridine nucleus to imidazole ring. The effects of 5a and 5b on angiotensin receptors (AT') and L-type calcium channels were investigated on isolated rat aorta. Materials and Methods Aortic rings were pre-contracted with 1 pM Angiotensin II or 80 mM KCl and relaxant effects of losartan, nifedipine, 5a and...

متن کامل

Functional coupling of Ca2+ channels and ryanodine receptors in cardiac myocytes.

In skeletal muscle, dihydropyridine receptors are functionally coupled to ryanodine receptors of the sarcoplasmic reticulum in triadic or diadic junctional complexes. In cardiac muscle direct physical or functional couplings have not been demonstrated. We have tested the hypothesis of functional coupling of L-type Ca2+ channels and ryanodine receptors in rat cardiac myocytes by comparing the ef...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 69 4  شماره 

صفحات  -

تاریخ انتشار 1991